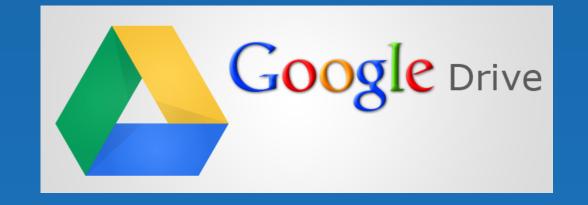
Privacy-Preserving Aggregation of Data from Multiple Sources

David Pointcheval CNRS - ENS - INRIA

LIG - Grenoble January 10th, 2019

The Cloud



David Pointcheval 2 / 26

Anything from Anywhere

One can store

- Documents to share
- Pictures to edit
- Databases to query and access from everywhere

David Pointcheval *Introduction* 3 / 26

Security Requirements

As from a local hard drive/server, one expects

- Storage guarantees
- Privacy guarantees
 - **confidentiality** of the data
 - anonymity of the users
 - obliviousness of the queries/processing

How to proceed?

David Pointcheval *Introduction* 4 / 26

Confidentiality vs Sharing & Computations

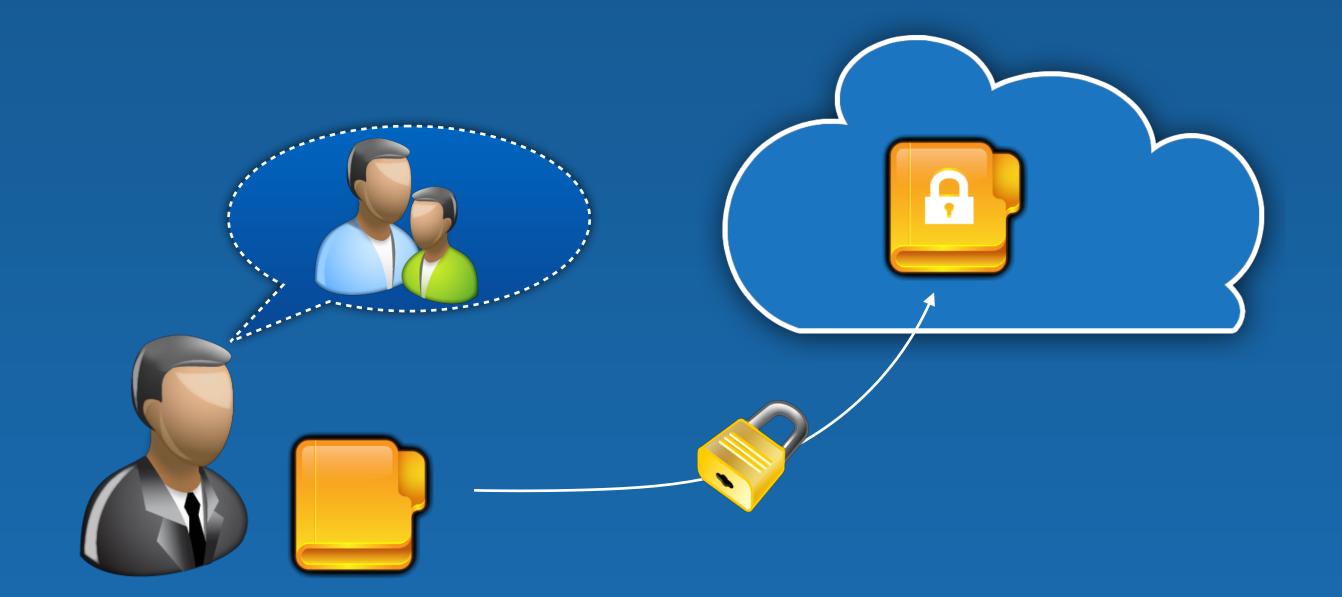
Classical Encryption allows to protect data

- the provider stores them without knowing them
- nobody can access them either, except the owner/target receiver

How to share the data? How to compute on the data?

[Fiat-Naor - Crypto '94]

CryptoCloud



The sender chooses a target set

[Fiat-Naor - Crypto '94]

The sender chooses a target set

[Fiat-Naor - Crypto '94]

The sender chooses a target set
Users get all-or-nothing about the data

[Fiat-Naor - Crypto '94]

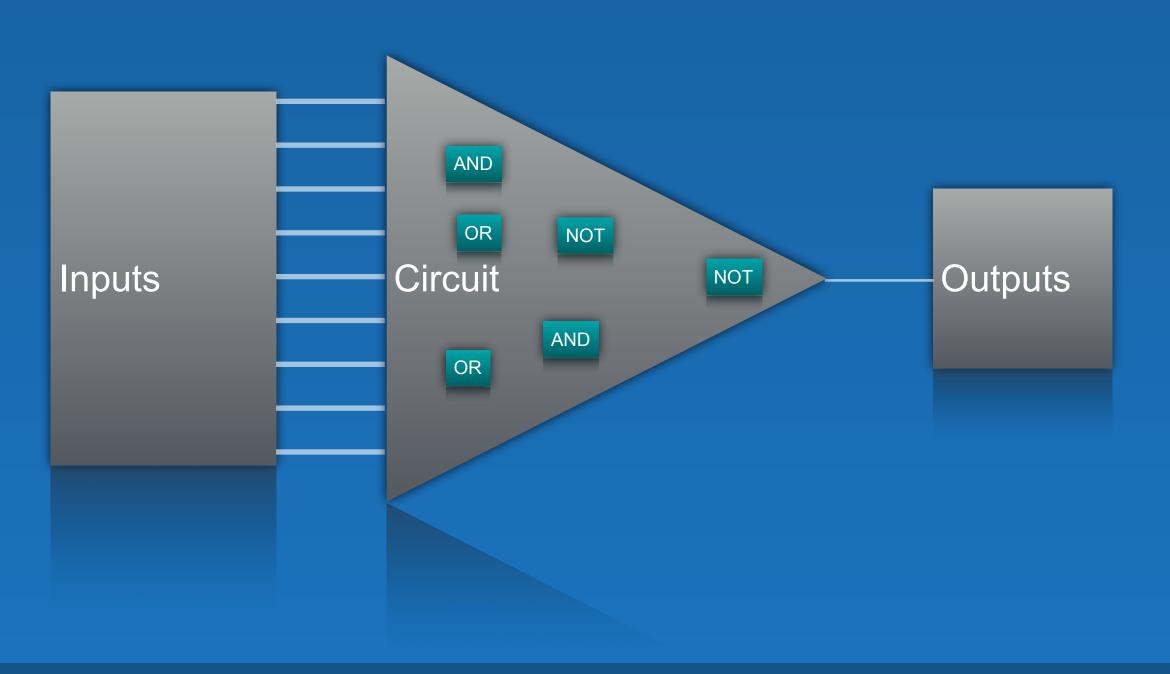
The sender chooses a target set
Users get all-or-nothing about the data

Sharing to a Target Setbut No Computations!

Fully Homomorphic Encryption

[Rivest-Adleman-Dertouzos - FOCS '78]

[Gentry - STOC '09]

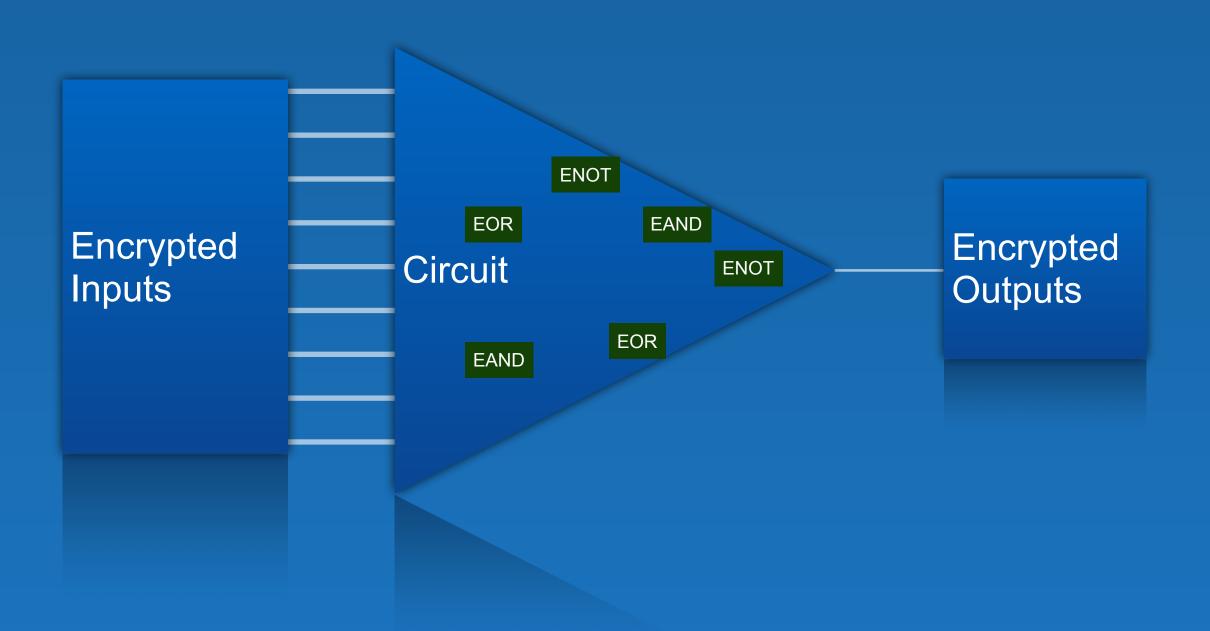


Fully Homomorphic Encryption

[Rivest-Adleman-Dertouzos - FOCS '78]

[Gentry - STOC '09]

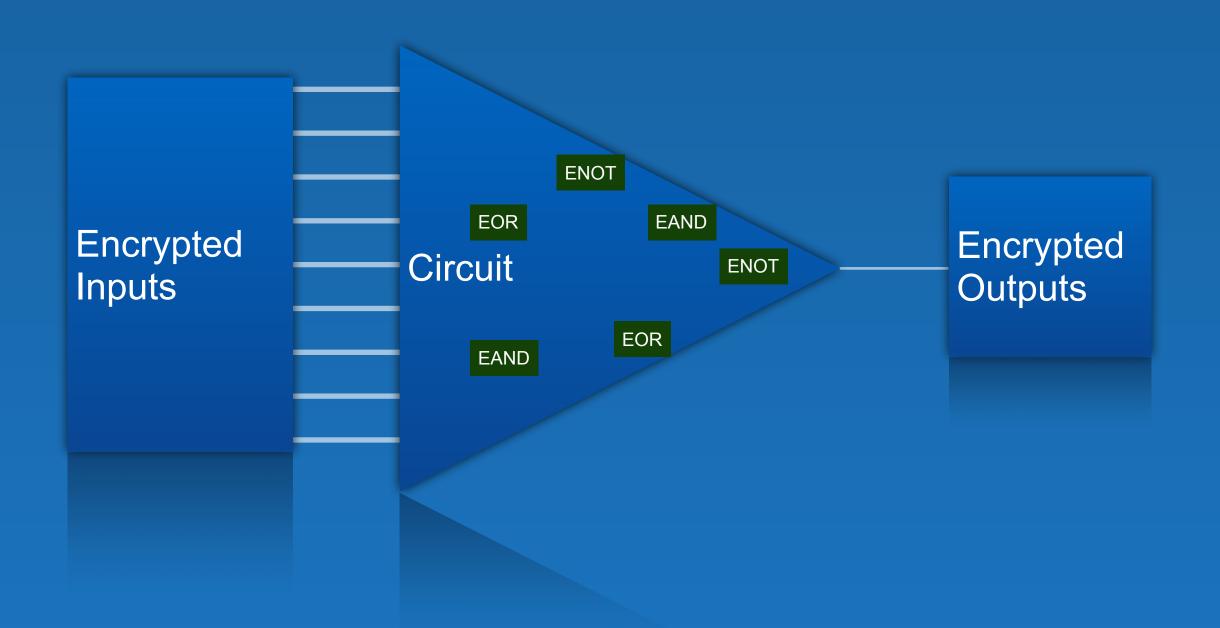
FHE allows any computations on encrypted data

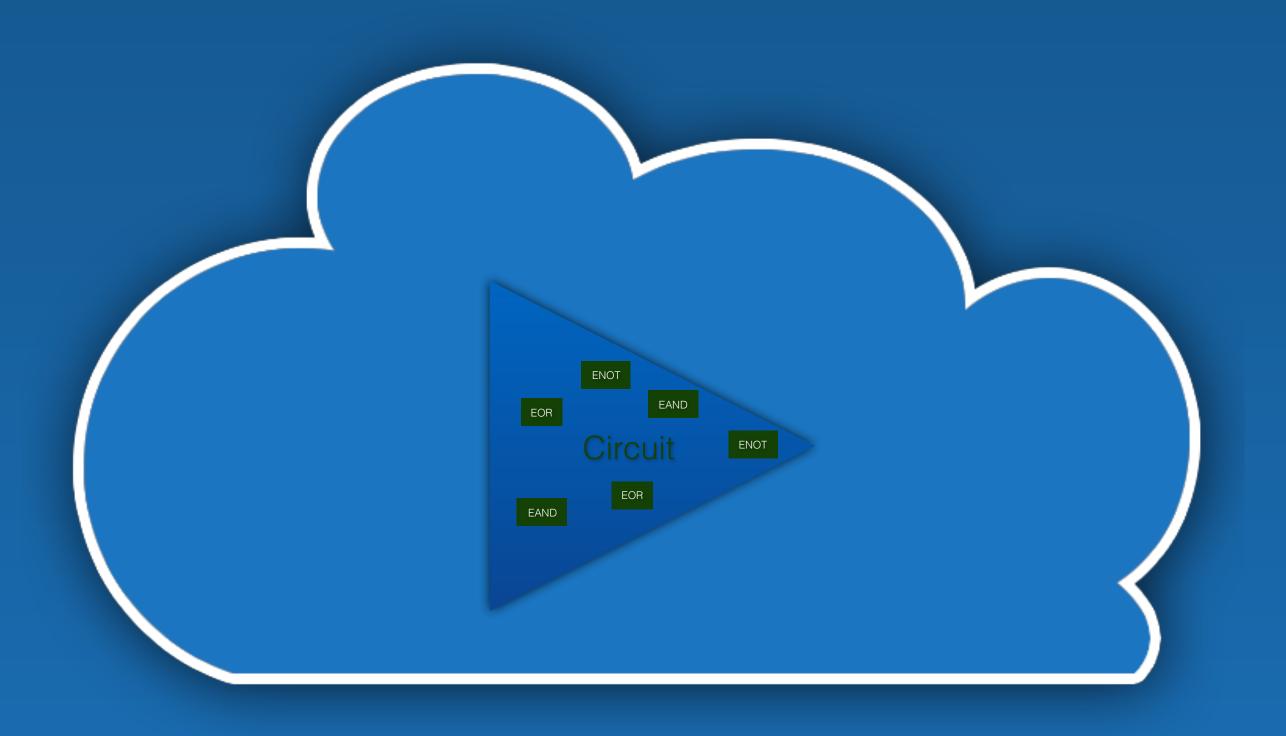


Fully Homomorphic Encryption

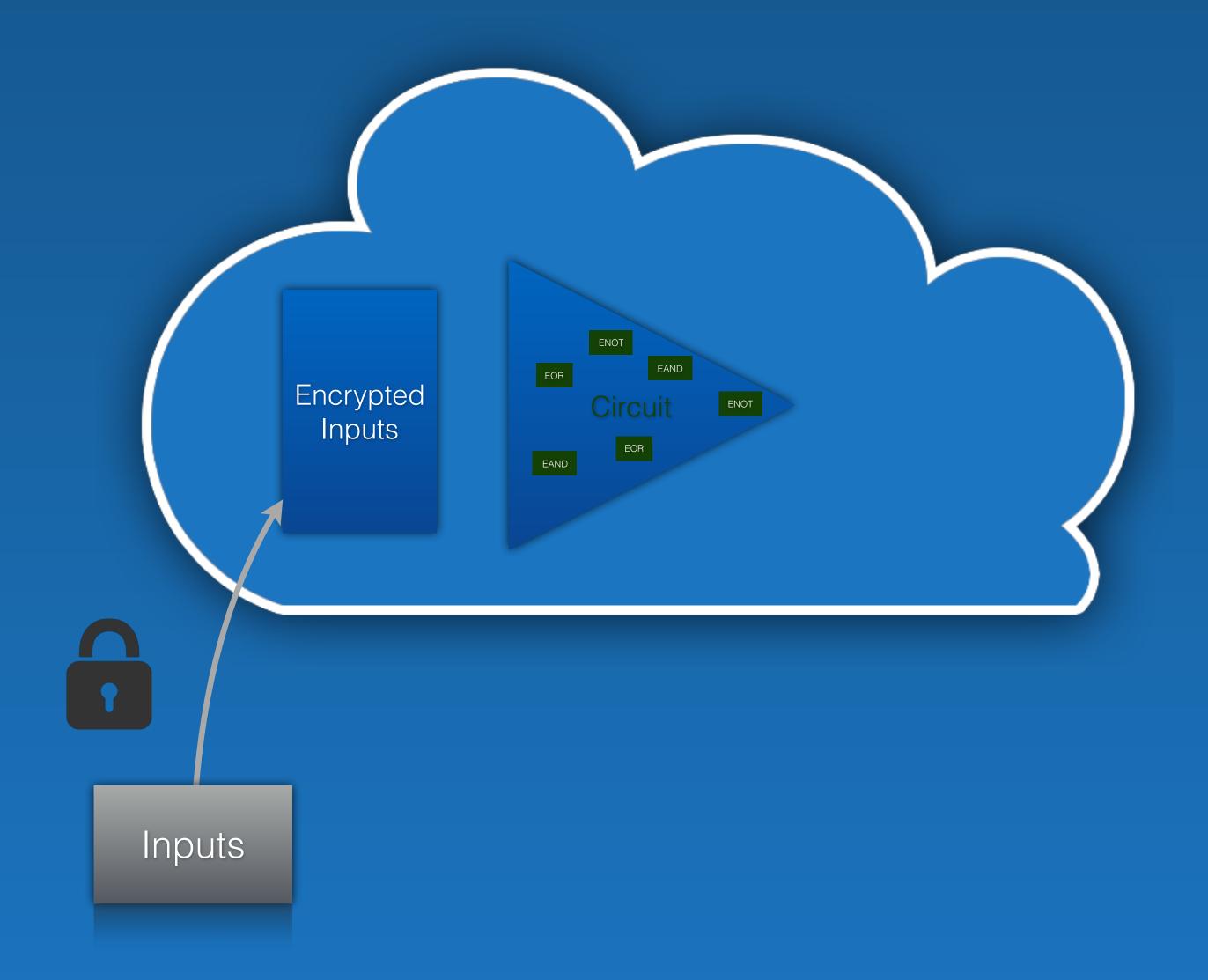
[Rivest-Adleman-Dertouzos - FOCS '78] [Gentry - STOC '09]

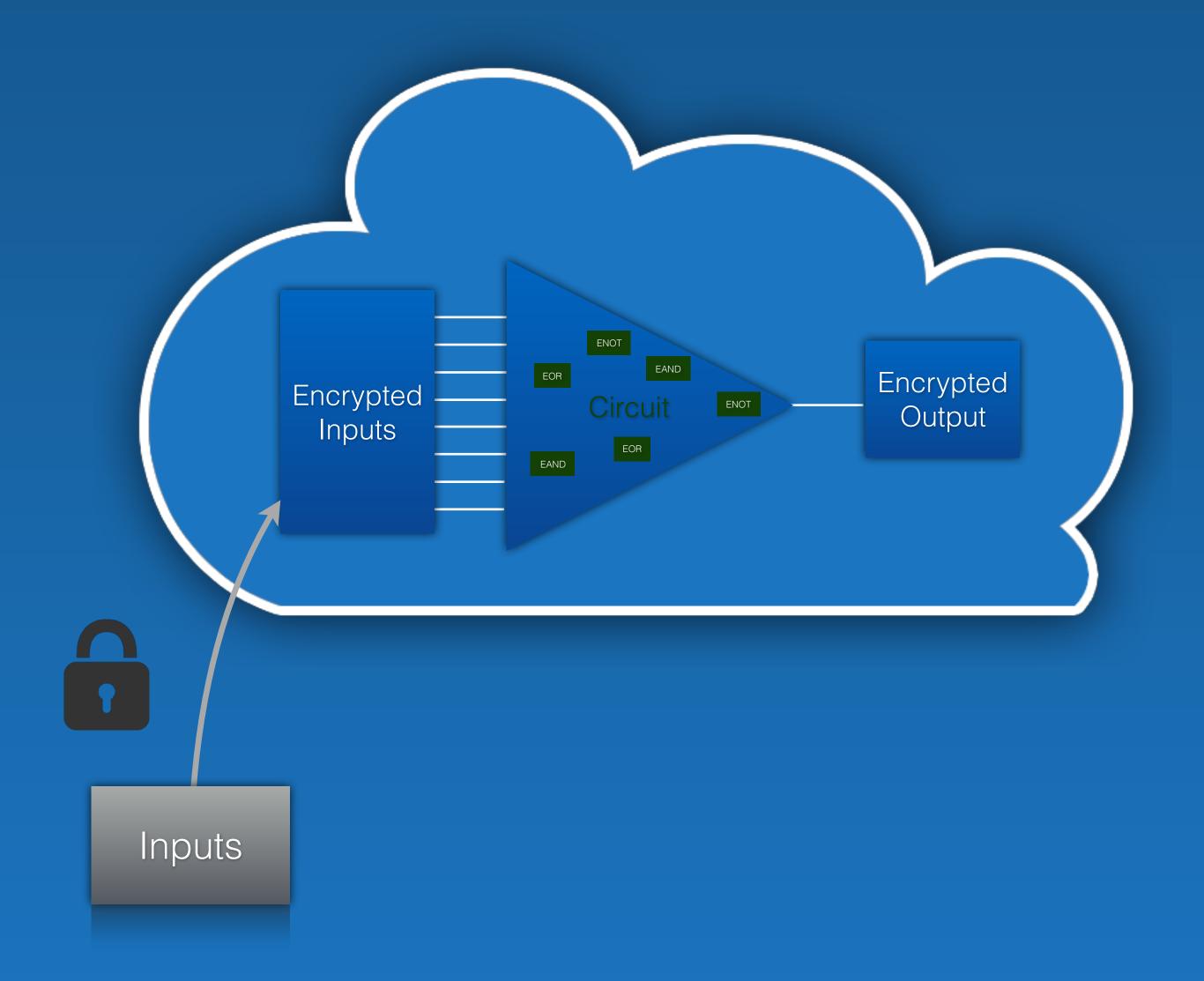
FHE allows any computations on encrypted data But the result is **encrypted** as the inputs!

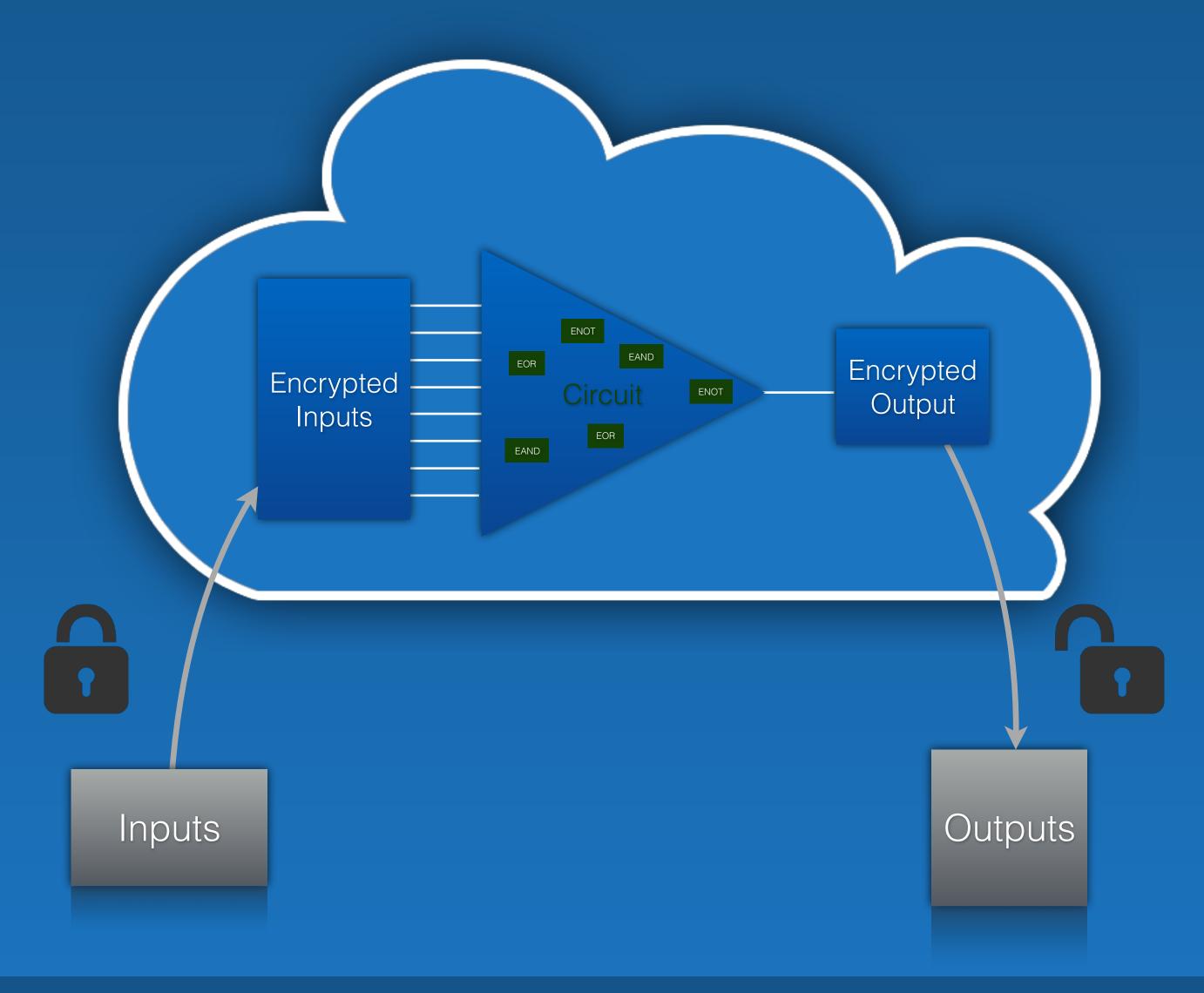


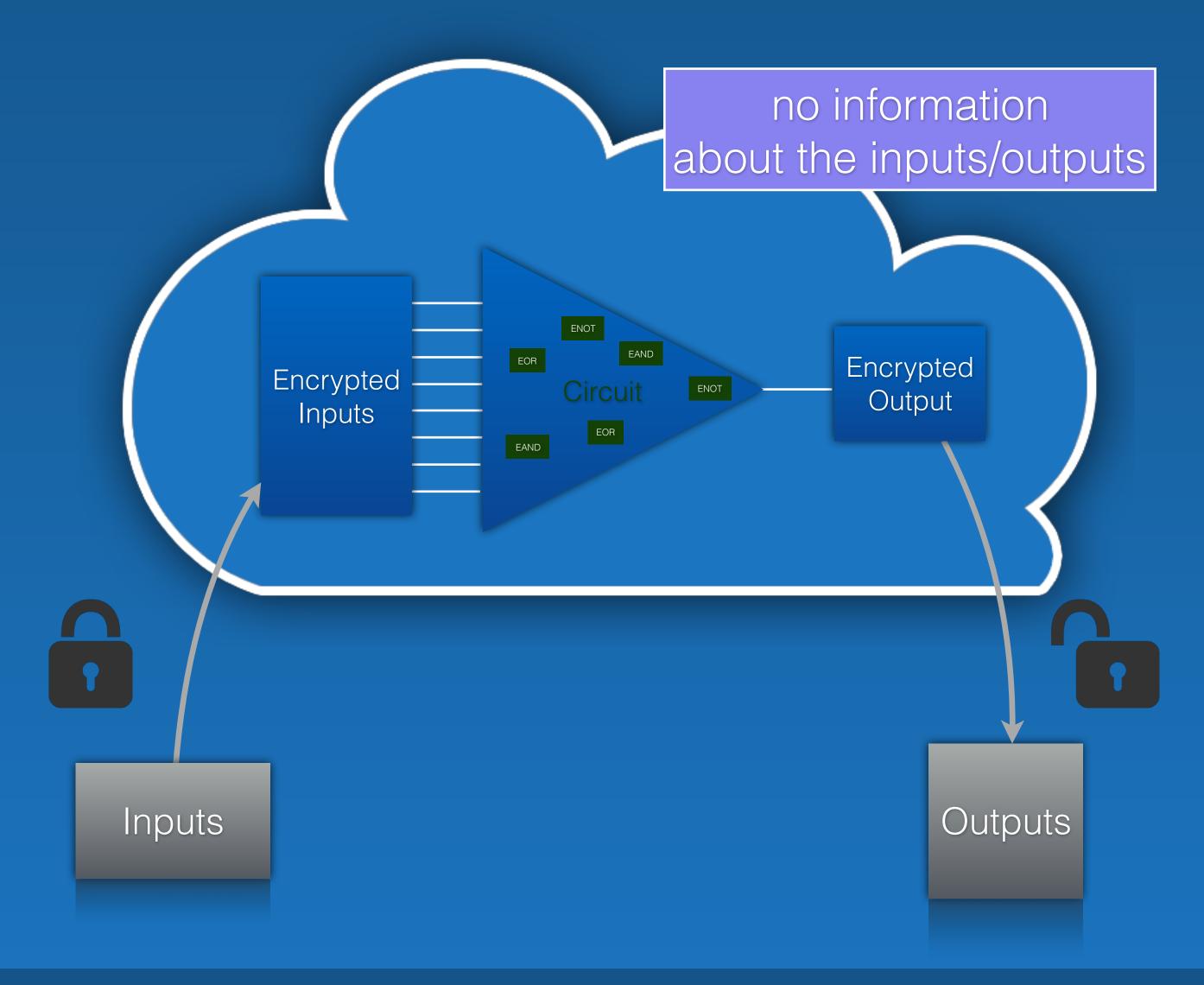


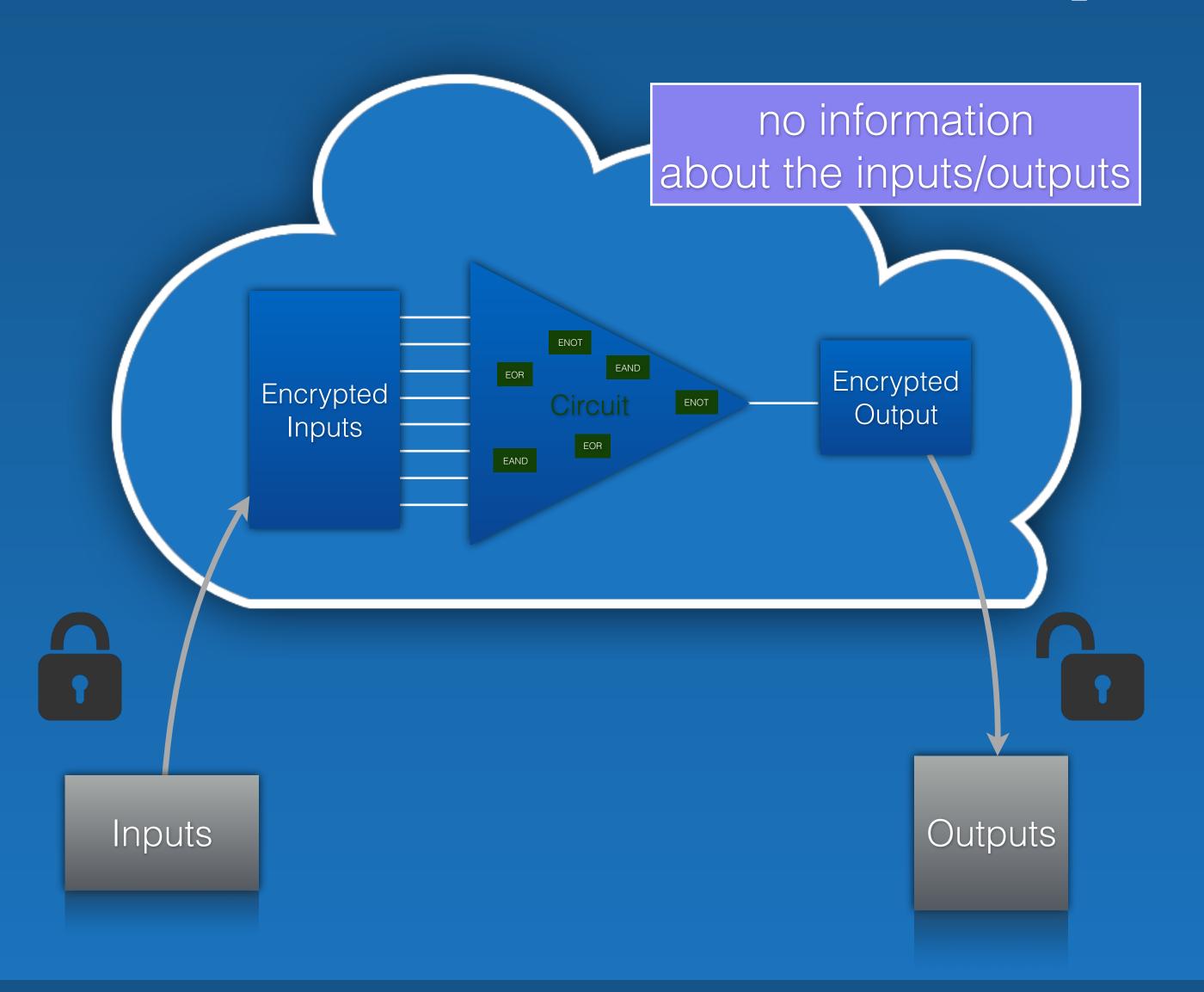
Inputs





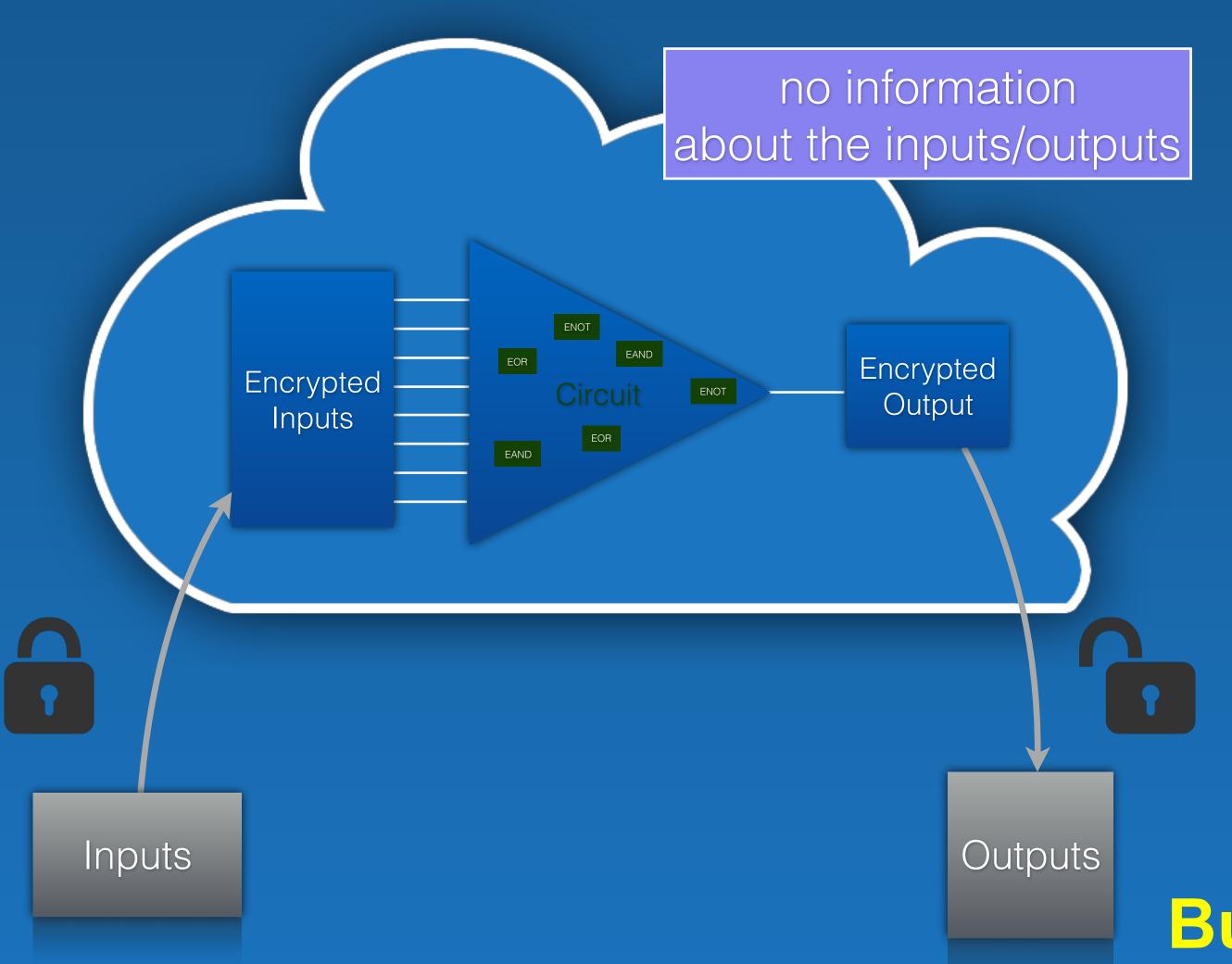






FHE allows

- Any computation on private inputs
- Private « googling »



FHE allows

- Any computation on private inputs
- Private « googling »

Computations But No Controlled Sharing!

[Boneh-Sahai-Waters - TCC '11]

[Boneh-Sahai-Waters - TCC '11]

The authority generates functional decryption keys dk_f according to functions f

David Pointcheval 9 / 26 Functional Encryption

[Boneh-Sahai-Waters - TCC '11]

The authority generates functional decryption keys dk_f according to functions f

David Pointcheval 9 / 26 Functional Encryption

[Boneh-Sahai-Waters - TCC '11]

The authority generates functional decryption keys dk_f according to functions f

From C = Encrypt(x), $\text{Decrypt}(dk_f, C)$ outputs f(x)

[Boneh-Sahai-Waters - TCC '11]

The authority generates functional decryption keys dk_f according to functions f

- From C = Encrypt(x), $\text{Decrypt}(dk_f, C)$ outputs f(x)
- This allows controlled sharing of data

Result in clear for a Specific Function for Specific Users

David Pointcheval

Function

9 / 26

Functional Encryption is Powerful

Functional Encryption allows access control:

- with $f_{id}(x || y) = (if y = id, then x, else \bot)$: identity-based encryption
- with $f_G(x || y) = (\text{if } y \in G, \text{ then } x, \text{ else } \bot)$: broadcast encryption

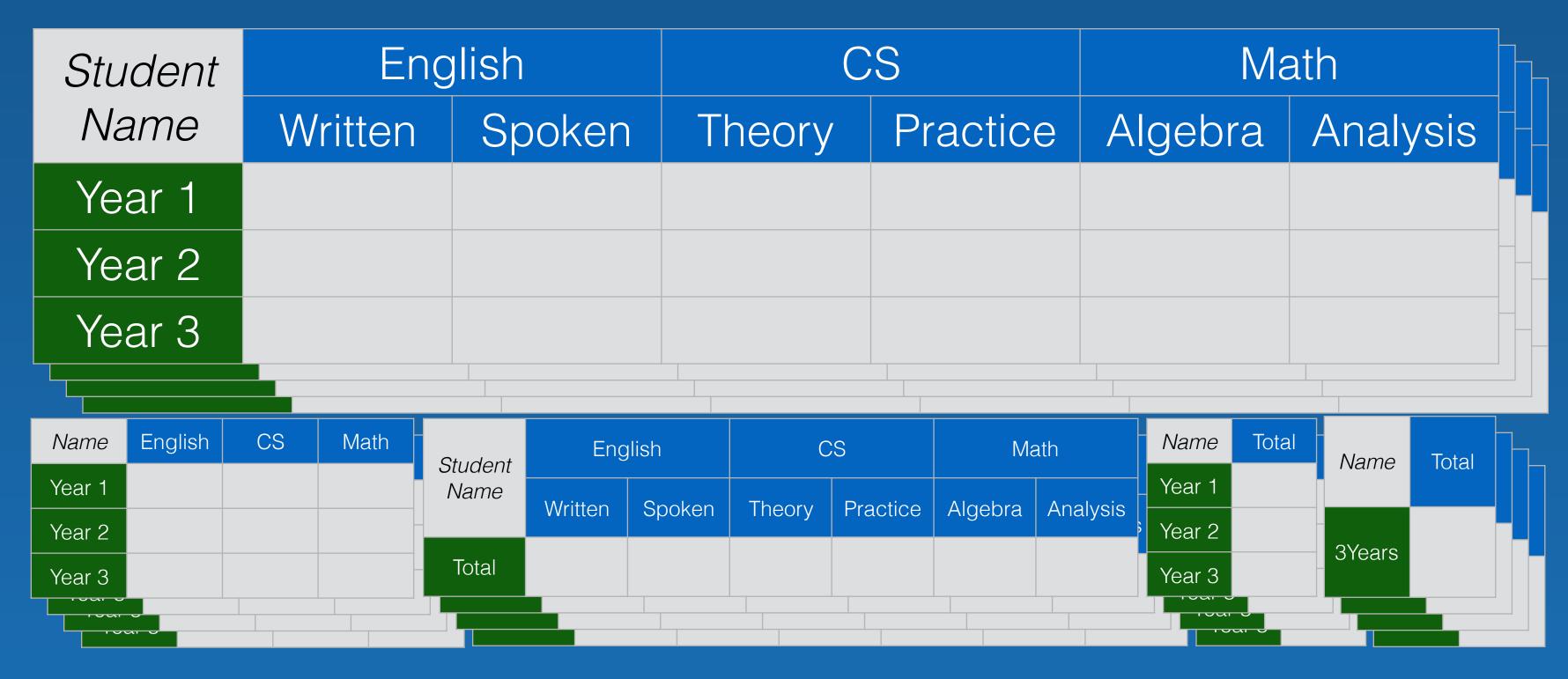
Functional Encryption allows computations:

- \bigcirc any function f: in theory, with iO (Indistinguishable Obfuscation)
- concrete functions: inner product

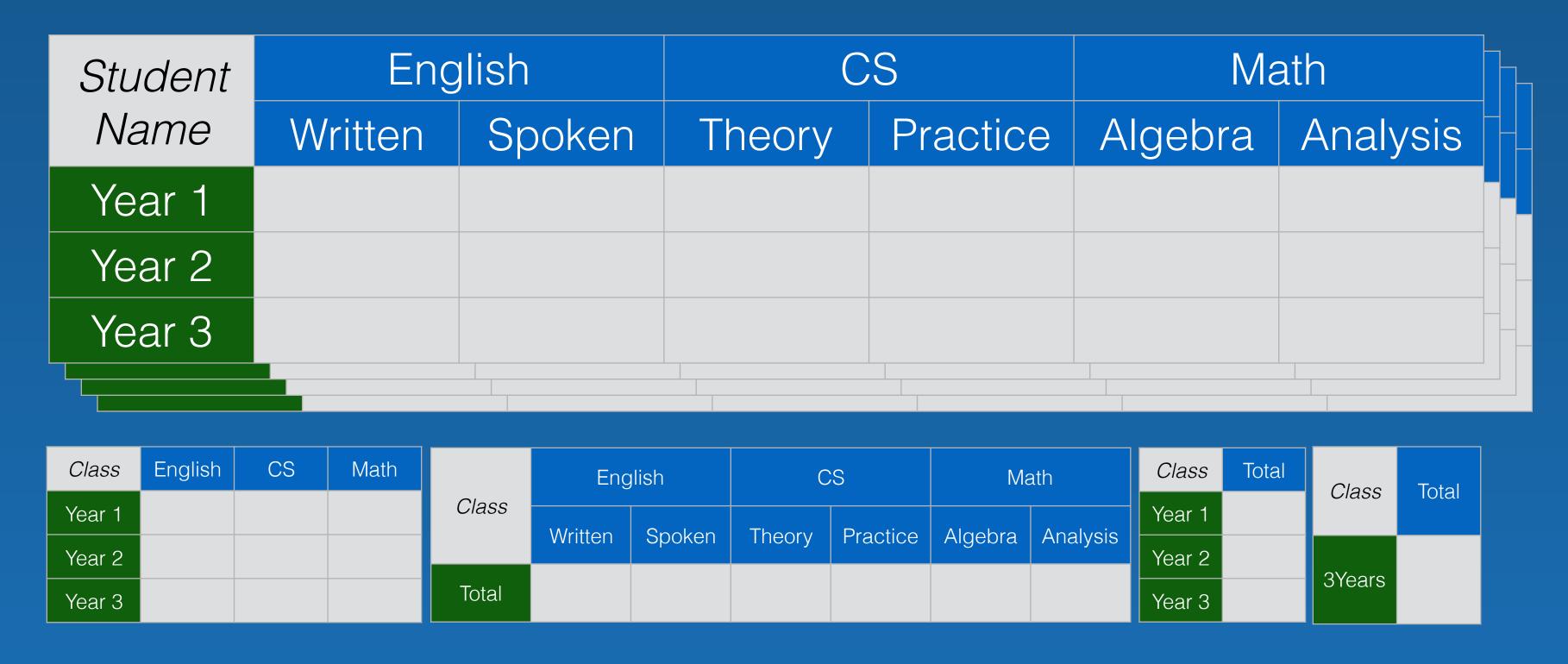
Student	Student English		CS		Math	
Name	Written	Spoken	Theory	Practice	Algebra	Analysis
Year 1						
Year 2						
Year 3						

Student	English		CS		Math		
Name	Written	Spoken	Theory	Practice	Algebra	Analysis	
Year 1							
Year 2							
Year 3							

For each student: transcript with all the grades



- For each student: transcript with all the grades
- Access to partial information for each student



- For each student: transcript with all the grades
- Access to partial information for each student
- And even global grades for the class

FE: Inner Product

[Abdalla-Bourse-De Caro-P. - PKC '15 - EPrint 2015/017]

Cells of derived tables are linear combinations $\overrightarrow{a_i}$ of the grades \overrightarrow{b} from the main table:

$$c_i = \sum_j a_{i,j} b_j = \overrightarrow{a_i} \cdot \overrightarrow{b}$$

- $\stackrel{j}{\circledcirc b}$: vector of the private grades, encrypted in the main table
- $\bigcirc \overrightarrow{a_i}$: vector of the public coefficients for the cell c_i , defines f_i
- With ElGamal encryption:
 - computations modulo p
 - if grades, coefficients, and classes small enough: DLog computation

ElGamal Encryption

[ElGamal - IEEE TIT '85]

 \bigcirc ElGamal Encryption on $\mathbb{G} = \langle g \rangle$:

Secret key: $s \in \mathbb{Z}_p$

Public key: $h = g^s$

Encryption: $c = (c_0 = g^r, c_1 = h^r \cdot m)$

Decryption: $m = \overline{c_1/c_0^s}$

- Semantically secure under DDH in $\mathbb{G} = \langle g \rangle$
- Multiplicatively homomorphic
- Additive variant: m is replaced by g^m but requires discrete logarithm computation
- Solution Encryption of vectors: with many h_i and the same randomness

FE: IP with ElGamal

[Abdalla-Bourse-De Caro-P. - PKC '15 - EPrint 2015/017]

Parameters: a group $\mathbb{G} = \langle g \rangle$ of prime order p

Secret key: $\vec{s} = (s_j)_j$, for random scalars in \mathbb{Z}_p

Public key: $\vec{h} = (h_j = g^{s_j})_j$

Encryption: $c=g^r$ and $\vec{C}=(C_j=h_j^r\cdot g^{x_j})_j$

 $D = \vec{f} \cdot \vec{C} = \prod_{j} C_{j}^{f_{j}}$ $= g^{r} \sum_{j} f_{j} s_{j} g^{\sum_{j} f_{j} x_{j}} = g^{r} \cdot \vec{f} \cdot \vec{s} g^{\vec{f} \cdot \vec{x}}$

Functional key: $dk_f = \sum_j f_j s_j = \vec{f} \cdot \vec{s}$

Decryption: $D=c^{dk_f}\cdot g^m\longrightarrow m=\log_g(\vec{f}\cdot\vec{C}/c^{dk_f})=\vec{f}\cdot\vec{x}$

FE: Limitations

one key limits to one function on any vector

- a malicious player could ask many functional keys

 - for the indistinguishability between two sets of vectors, the adversary is not allowed to ask keys that trivially tell them appart
 - \Rightarrow if *n* vectors in the sets, the adversary cannot ask any key!

a unique sender only can encrypt all the inputs

Multi-Input Functional Encryption (MIFE)

[Goldwasser-Gordon-Goyal-Jain-Katz-Liu-Sahai-Shi-Zhou - Eurocrypt '14 - EPrint 2013/727 - EPrint 2013/774]

Inner-Product Functional Encryption

Multi-Client Functional Encryption

© Client C_i generates $c_i = E(i,\lambda,x_i)$ for a label λ (or a time period) \Rightarrow only one ciphertext for each index i and each label λ

[Goldwasser-Gordon-Goyal-Jain-Katz-Liu-Sahai-Shi-Zhou - Eurocrypt '14 - EPrint 2013/727 - EPrint 2013/774]

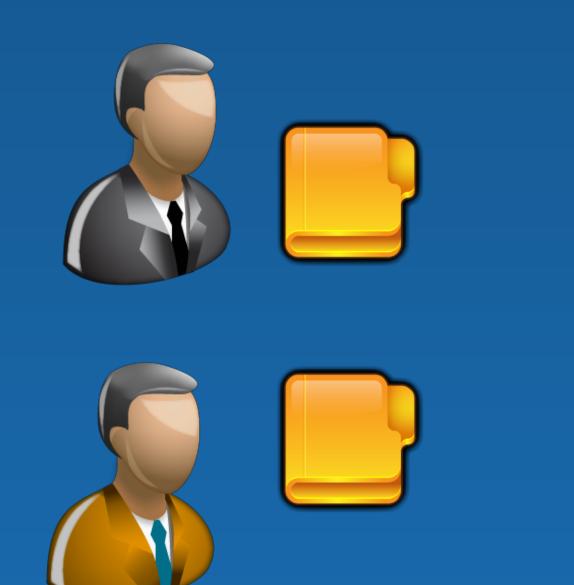
- Multi-User Inputs
- Private encryption limits attacks
- More reasonable security model

But still a unique authority for the functional key generation

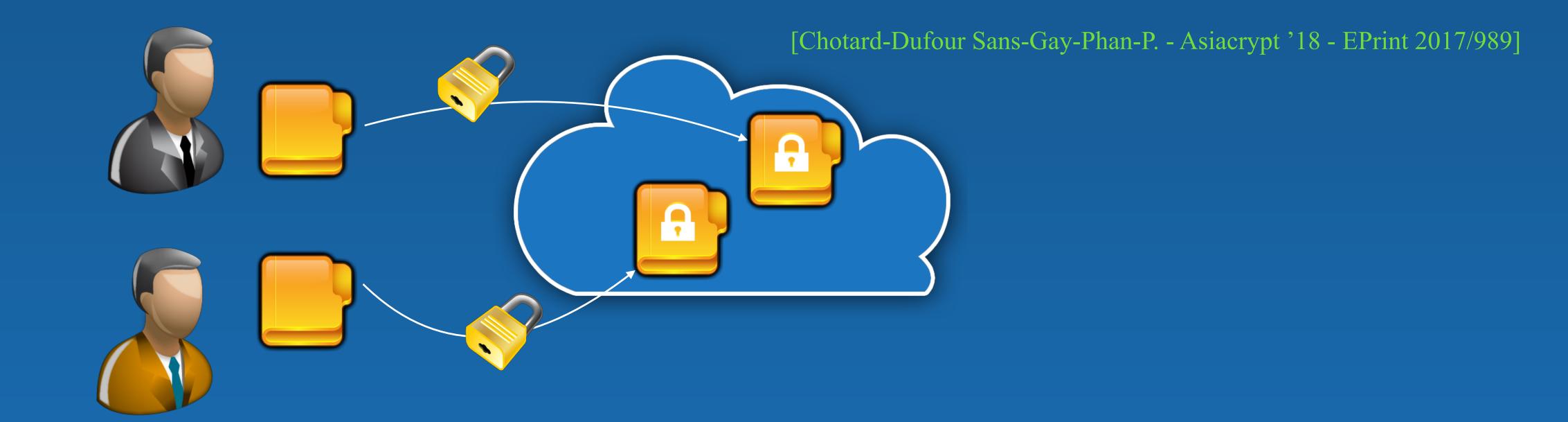
Independent and Untrusted Clients

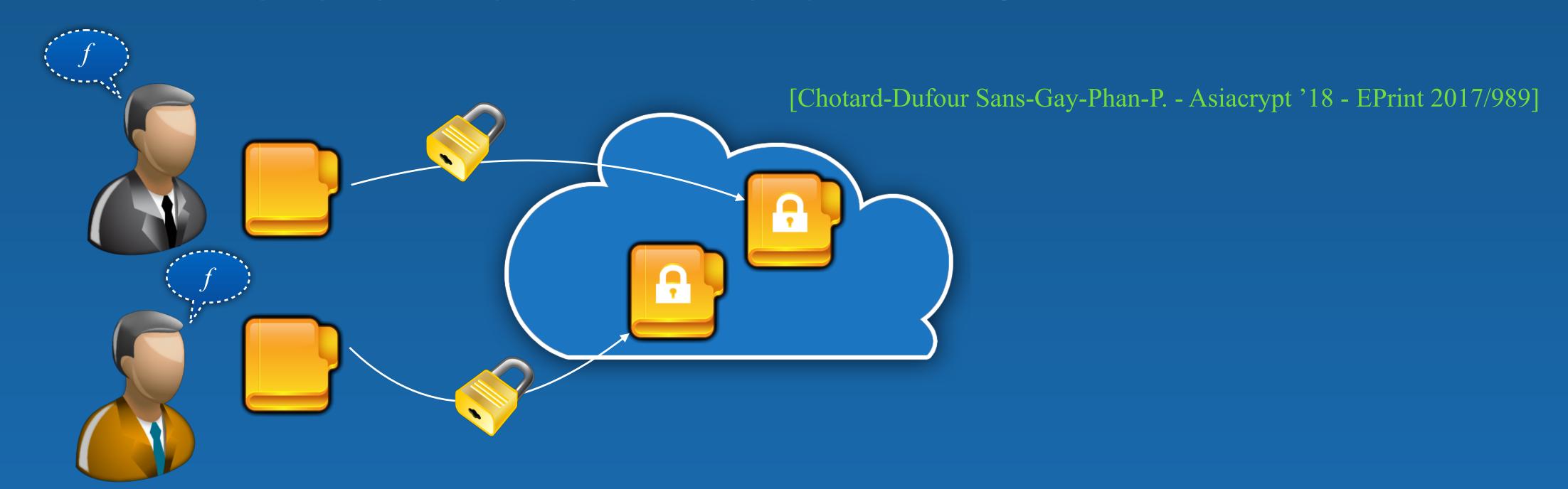
- Senders $(S_i)_i$ provide sensitive inputs x_i (e.g. financial data) in an encrypted way under secret encryption keys ek_i $\rightarrow c_i = \mathbf{E}(ek_i, \lambda, x_i)$ for a label λ (or every time period)
- Some function f, an aggregator proposes, as a service, to communicate the aggregation f(x) for every label λ, thanks to a functional decryption key dk_f
- The senders want to keep control on f $\rightarrow dk_f$ is generated by the senders

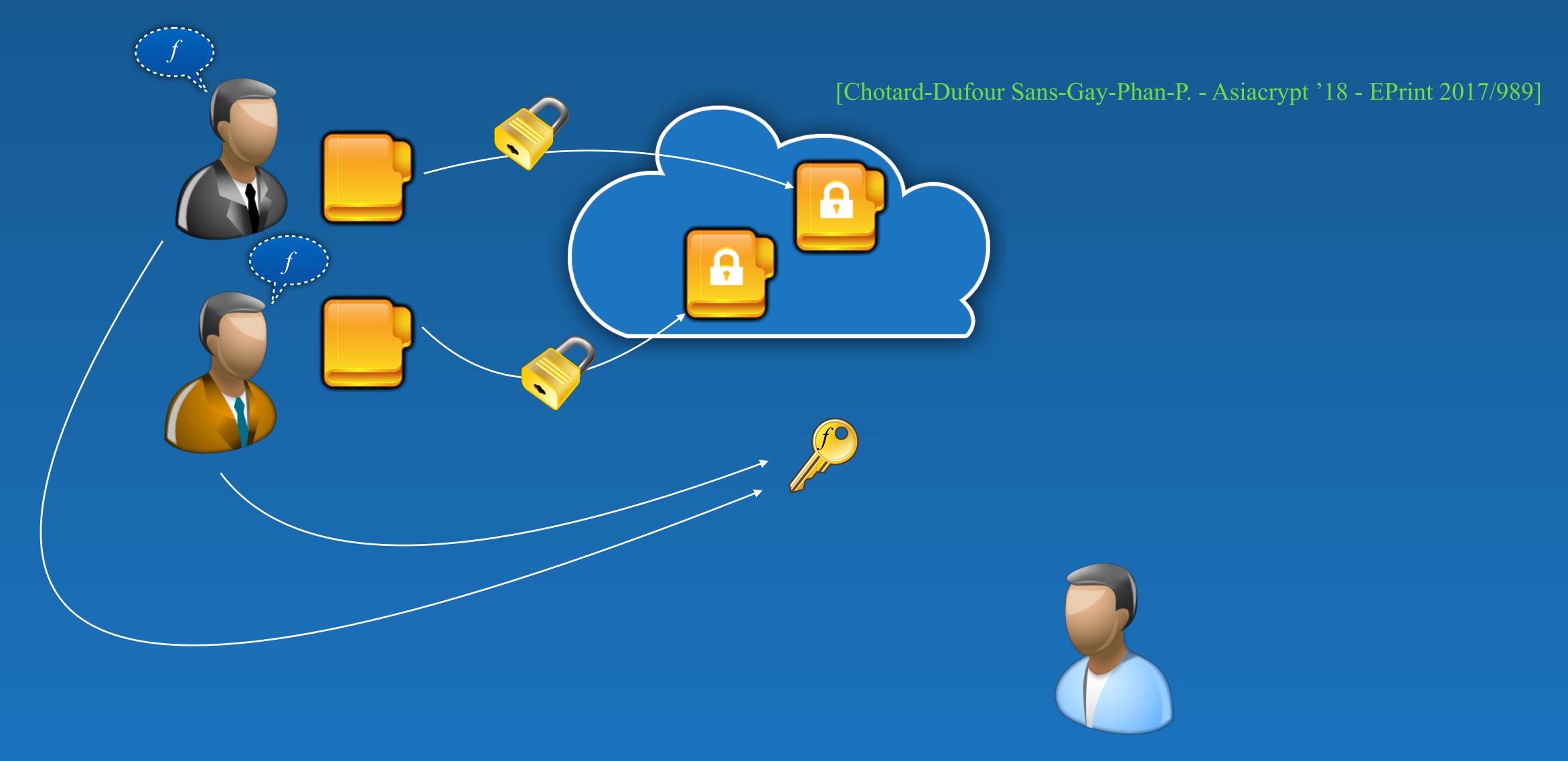
David Pointcheval Decentralized MCFE 17 / 26

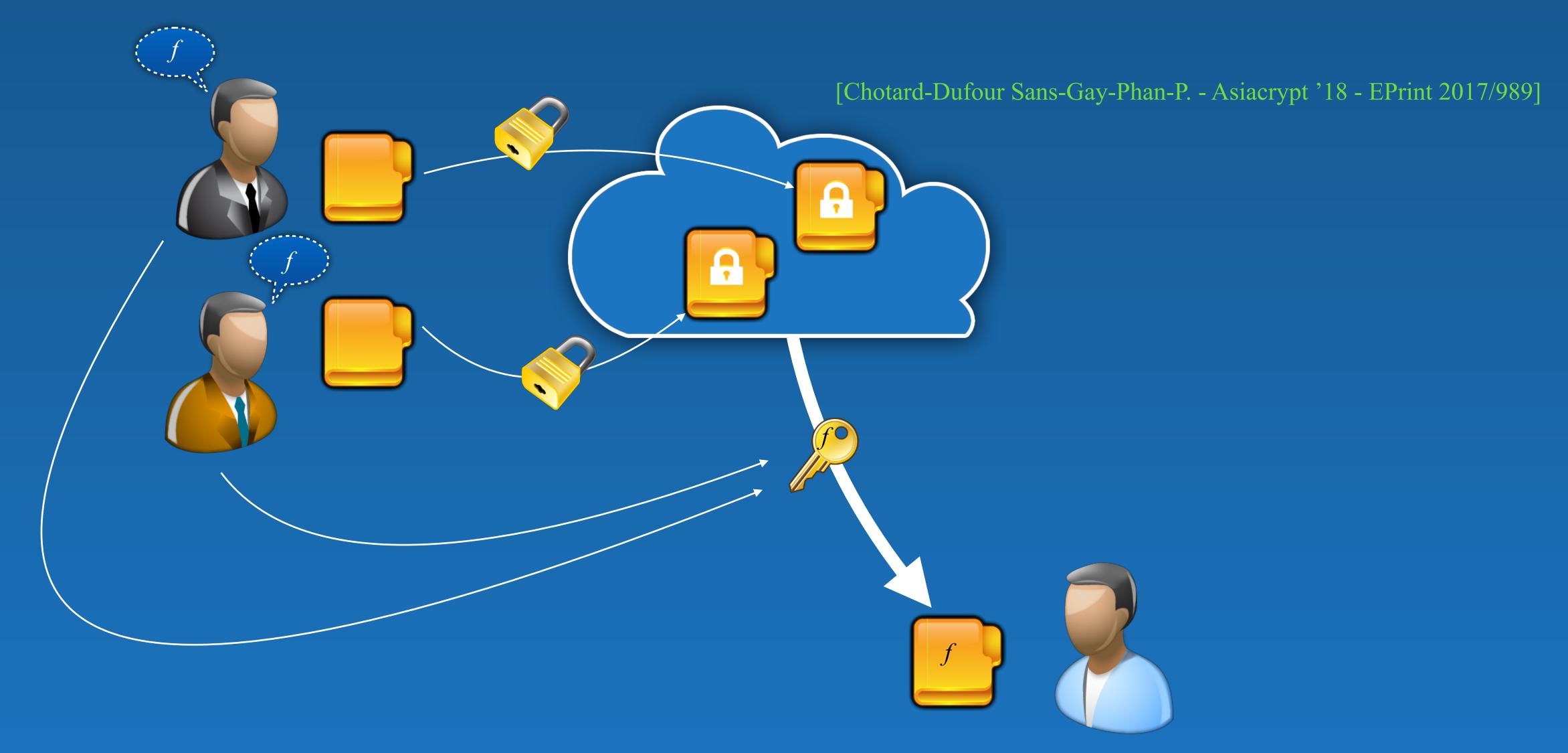


18/26









[Chotard-Dufour Sans-Gay-Phan-P. - Asiacrypt '18 - EPrint 2017/989]

- Setup() \rightarrow secret key sk_i and encryption key ek_i for each sender S_i
- \bigcirc Encrypt $(ek_i,\lambda,x_i) \rightarrow c_i = E(ek_i,\lambda,x_i)$ for the label λ
- \bigcirc DKeyGen $((sk_i)_i,f) \rightarrow dk_f$
- Decrypt $(dk_f, \lambda, C) \rightarrow f(x)$ if $C = (c_i = E(ek_i, \lambda, x_i))_i$
- Encrypt/Decrypt are non-interactive algorithms
- Setup/DKeyGen are interactive protocols between the senders
- DKeyGen should be a one-round protocol only

FE: IP with ElGamal

[Abdalla-Bourse-De Caro-P. - PKC '15 - EPrint 2015/017]

Parameters: a group $\mathbb{G} = \langle g \rangle$ of prime order p

Secret key: $\vec{s} = (s_j)_j$, for random scalars in \mathbb{Z}_p

Public key: $\vec{h} = (h_j = g^{s_j})_j$

Encryption: $c=g^r$ and $\vec{C}=(C_j=h_j^r\cdot g^{x_j})_j$

 $D = \vec{f} \cdot \vec{C} = \prod_{j} C_{j}^{f_{j}}$ $= g^{r} \sum_{j} f_{j} s_{j} g^{\sum_{j} f_{j} x_{j}} = g^{r} \cdot \vec{f} \cdot \vec{s} g^{\vec{f} \cdot \vec{x}}$

Functional key: $dk_f = \sum_i f_j s_j = \vec{f} \cdot \vec{s}$

Decryption: $D=c^{dk_f}\cdot g^m\longrightarrow m=\log_g(\vec{f}\cdot\vec{C}/c^{dk_f})=\vec{f}\cdot\vec{x}$

Because of the common r in the ciphertext, a unique sender must encrypt the full vector

MCFE: IP with ElGamal

[Chotard-Dufour Sans-Gay-Phan-P. - Asiacrypt '18 - EPrint 2017/989]

Parameters:

Encryption/Secret key:

Encryption:

Functional key:

Decryption:

$$\mathbb{G} = \langle g \rangle$$
 of prime order p , hash function \mathcal{H} $e\mathbf{k}_i = s\mathbf{k}_i = s_i$, for random scalar in \mathbb{Z}_p

$$C_i = \mathcal{H}(\lambda)^{s_i} \cdot g^{x_i}$$

$$D = \vec{f} \cdot \vec{C} = \prod_{i} C_{i}^{f_{i}}$$

$$= \mathcal{H}(\lambda)^{\sum_{i} f_{i} s_{i}} g^{\sum_{i} f_{i} x_{i}} = \mathcal{H}(\lambda)^{\vec{f} \cdot \vec{s}} g^{\vec{f} \cdot \vec{x}}$$

$$dk_f = \sum_i f_i s_i = \vec{f} \cdot \vec{s}$$

$$D = \mathcal{H}(\lambda)^{dk_f} \cdot g^m \longrightarrow m = \log_g(\vec{f} \cdot \vec{C}/\mathcal{H}(\lambda)^{dk_f}) = \vec{f} \cdot \vec{x}$$

Encryption can be performed by independent senders

DMCFE: IP with ElGamal

[Chotard-Dufour Sans-Gay-Phan-P. - Asiacrypt '18 - EPrint 2017/989]

Functional key:
$$dk_f = \sum_i f_i s_i = \vec{f} \cdot \vec{s} = \vec{1} \cdot \vec{X}$$
 where $\vec{X} = (X_i = f_i s_i)_i$

- The senders can encrypt $(X_i = f_i s_i)_i$ under another IP-MCFE and the label f
- \bigcirc The aggregator knows the functional key for (1,...,1)
- From the ciphertext of $(X_i = f_i s_i)_i$, it can extract dk_f
- This would work with a perfect IP-MCFE: any plaintext can be decrypted

Here, only small plaintexts can be decrypted: dkf is large!

David Pointcheval

DMCFE: IP with Pairings

[Chotard-Dufour Sans-Gay-Phan-P. - Asiacrypt '18 - EPrint 2017/989]

Bilinear map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$

- \bigcirc Two IP-MCFE: \mathbf{E}_1 in \mathbb{G}_1 and \mathbf{E}_2 in \mathbb{G}_2
- \bigcirc The senders encrypt the messages x_i with \mathbf{E}_1
- \bigcirc The senders encrypt the functional key shares X_i with \mathbf{E}_2
- \bigcirc The aggregator knows the functional key for (1,...,1) in $\mathbf{E}_2 \rightarrow$ it gets g_2^{dkf}
- \bigcirc From g_2^{dkf} and ciphertexts of x_i with \mathbf{E}_1 in $\mathbb{G}_1 \rightarrow$ one gets $g_T f_i x_i$

DMCFE: IP with Pairings

[Chotard-Dufour Sans-Gay-Phan-P. - Asiacrypt '18 - EPrint 2017/989]

Bilinear map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$

- \bigcirc Two IP-MCFE: \mathbf{E}_1 in \mathbb{G}_1 and \mathbf{E}_2 in \mathbb{G}_2
- \bigcirc The senders encrypt the messages x_i with \mathbf{E}_1
- \bigcirc The senders encrypt the functional key shares X_i with \mathbf{E}_2
- \bigcirc The aggregator knows the functional key for (1,...,1) in $\mathbf{E}_2 \rightarrow$ it gets g_2^{dkf}
- \bigcirc From g_2^{dkf} and ciphertexts of x_i with \mathbf{E}_1 in $\mathbb{G}_1 \rightarrow$ one gets $g_T f_i x_i$

The discrete logarithm is small: can be extracted!

DMCFE: IP with Pairings

[Chotard-Dufour Sans-Gay-Phan-P. - Asiacrypt '18 - EPrint 2017/989]

Our Decentralised Multi-Client Functional Encryption:

- Security
 - with Adaptive Corruptions of the Clients/Senders
 - under the classical SXDH assumption
- Efficiency
 - Setup: generation of the functional key for (1,...,1)
 - DKeyGen protocol: just one ciphertext sent by each sender

Machine Learning and Encrypted Data

- Fully Homomorphic Encryption
 - Outsourced Machine Learning
 - Build an encrypted model from encrypted data (for the owner of the data)
 - Then classify encrypted data using this encrypted model
 - Outsourced Classification: encrypted inputs and encrypted output
 - Appropriate choice of the model

[Bourse-Minelli-Minihold-Paillier - Crypto '18 - EPrint 2017/1114]

- MNIST Dataset: 96% of accuracy in less than 2 seconds with Discretized Neural Networks with 100 neurons
- Functional Encryption

[Dufour Sans-Gay-P. - EPrint 2018/206]

- Classification on encrypted data: encrypted inputs but result in clear
 - Inner products lead to linear model, but possible extension to quadratic model
 - MNIST Dataset: 97% of accuracy in less than 5 seconds, with a Quadratic Model

Conclusion

- Functional Encryption
 - Ideal functionalities on encrypted data with result in clear
 - Authority-based functionality
 - Encrypted inputs from a unique sender
- DMCFE
 - Aggregation of multi-source encrypted inputs
 - Functionality under control of the senders

Encrypted inputs and result in clear

